Retro der Woche 14/2015

Bereits vor einigen Wochen hatte ich hier eine Beweispartie des Australiers Peter Wong vorgestellt, in der es um Tempospiel geht. Wer nun vermutet, dies sei ein Thema, das Peter gern bearbeitet, so liegt der ziemlich richtig.

Drum heute ein weiteres Beispiel aus dieser Rubrik — mit diesem Hinweis und da das Stück nicht allzu lang ist, solltet ihr es unbedingt selbst lösen, falls ihr es noch nicht kennt.

Peter Wong
British Chess Magazine 1996, 2.-6. Platz
Beweispartie in 15,5 Zügen (15+13)

 

Das Zählen der im Diagramm sichtbaren Züge (0+0+2+0+2+2=6 bei Weiß, 1+0+0+0+4+4=9 bei Schwarz) hilft uns noch nicht viel weiter, aber schauen wir uns einmal an, welche Steine fehlen.

Weiterlesen

VRZ KLAN

Klaus Wenda und Andreas Thoma hatten im Januar hier im Blog ihren Einführungsaufsatz zur neuen Variante „KLAN“ der Verteidigungsrückzüger veröffentlicht.

Günther Weeth hatte nun in zwei der dort veröffentlichten Aufgaben Inkorrektheiten gefunden, die nun verbessert worden sind. Daher könnt ihr nun die zweite Auflage des KLAN-Artikels herunterladen.

Vielleicht regt euch dies noch einmal an, euch mit dieser interessanten VRZ-Variante zu beschäftigen.

Märchen-Beweispartien

Peter Fayers hat seine Sammlung von 500 Märchenschach-Beweispartien, angeordnet nach den verwendeten (und erklärten) Märchenbedingungen, publiziert; ihr könnt sie entweder direkt ansehen oder auch herunterladen (162 Seiten, pdf-Datei).

Ein kleines Beispiel gefällig?

Peter Fayers
Variant Chess 2010
Beweispartie in einem Zug (15+15), Superbauern, Glasgow Schach, Weiß muss Schach bieten

 

Superbauern ziehen vertikal beliebig weit, bis sie blockiert werden und schlagen diagonal. Beim Glasgow-Schach erfolgt die Umwandlung auf der vorletzten Reihe. Weiß muss, wenn er kann, Schach bieten.

1.Bxg7=S+ Lxg7. Könnt ihr euch eine kürzere Darstellung des Schnoebelen-Themas vorstellen? Ich auch nicht!

Peter freut sich über die Zusendung weiterer Beweispartien per Mail (fayers.peter(at)gmail.com), denn vollständig ist die Sammlung natürlich nicht.

Viel Spaß beim Lesen und Lösen — vielleicht kommt der eine oder andere von euch ja auch auf Ideen für eigene Märchen-Beweispartien?

Retro der Woche 13/2015

Der Franzose André Hazebrouck hat überwiegend klassische Auflöse-Retros gebaut und sich hierbei intensiv mit dem Thema „Retro-Opposition“ beschäftigt. Dabei geht es darum, dass in einer bestimmten Stellung (trotz beweglicher Figuren) kein Wechsel der Zugpflicht zwischen Schwarz und Weiß möglich ist, der für die Auflösung eigentlich erforderlich wäre.

Meist sind die Aufgaben von Hazebrouck hochkompliziert; heute habe ich ein für seine Verhältnisse etwas leichteres Stück herausgesucht.

André Hazebrouck
Die Schwalbe 1993, Günter Lauinger gewidmet, Ehrende Erwähnung
#1 (wer?) (14+13)

 

Schauen wir zunächst einmal, ob wir etwas über die fehlenden Steine herausfinden können: Die weißen Bauern haben offensichtlich drei Mal geschlagen: cxb, exd und f6/h6xg7, und damit sind alle drei fehlenden schwarzen Steine erklärt. Als schwarzen Schlagzug sehen wor zunächst nur f7xe6.

Weiterlesen

Probleemblad und Problemist

In dieser Woche lagen sowohl das neueste Heft von Probleemblad (Januar bis März 2015) als auch von The Problemist (März 2015) bei mir im Briefkasten.

Neben den Urdrucken (Madrasi-Beweispartie, Hilfsretraktor sowie in der Märchenabteilung ein Anticirce Høeg-Retraktor) stellt auch Bernd Gräfrath in seiner „Proof Games and Retros“ Rubrik in The Problemist wieder drei interessante Aufgaben vor; dieses Mal aus dem Schwalbe-Preisbericht 2012.

Ich hatte ja bereits darauf hingewiesen, dass Roberto Osorio (retro(at)probleemblad.nl) die Retro-Abteilung des Probleemblad übernommen hat. In seiner ersten Rubrik veröffentlicht er fünf Urdrucke (drei orthodoxe Beweispartien sowie zwei Anticirce-Procas), und eine der Beweispartien möchte ich hier (natürlich ohne Lösung!) vorstellen und euch damit zum Lösen animieren. Vielleicht seid ihr ja noch mehr motiviert, wenn ihr Robertos Einleitung lest („surely hard to solve, with an extremely hidden maneuver“) und noch wisst, dass das Stück nicht Computer-geprüft ist.

Satoshi Hashimoto
Probleemblad 2015
Beweispartie in 22 Zügen (10+14)

10. WCCT

Die Ausschreibung zum 10. WCCT (World Chess Composition Tournament) ist nun veröffentlicht.

Wie ihr sicherlich wisst, ist dies kein Einzel- sondern ein Mannschafts-Kompositionsturnier, und jetzt endlich auch mit einer Retro-Abteilung. Dort sind orthodoxe Beweispartien mit Platzwechseln verlangt.

Sobald die organisatorischen Fragen in Deutschland über die Schwalbe geklärt sind, werde ich auch hierüber berichten — ihr könnt ja schon anfangen zu komponieren…

Retro der Woche 12/2015

Heute möchte ich nicht nur eine tolle Aufgabe vorstellen, sondern auch noch einen Vergleich mit einem anderen Stück anstellen, das der Autor direkt bei seinem Urdruck als Basis benannt hatte. Dennoch vergab Preisrichter Gerd Wilts für dieses — wie man deswegen zunächst meinen sollte nicht allzu originelle — Problem den ersten Preis im Informalturnier einer weltweit sehr angesehenen Retro-Rubrik.

Silvio Baier
StrateGems 2010, nach Michel Caillaud, 1. Preis
Beweispartie in 28,5 Zügen (15+11)

 

Offensichtliche Züge oder Schlagfälle durch Schwarz zu zählen ist schnell erledigt und nicht ergiebig, darum kümmern wir uns zunächst um die Züge der weißen Steine. Sofort fallen im Diagramm die drei schwarzfeldrigen weißen Läufer auf: Zwei Umwandlungen haben wir also schon erkannt.

Zählen wir nun die offensichtlichen Züge von Weiß; dabei lassen wir zunächst die schwarzfeldrigen weißen Läufer außer Betracht. Damit sehen wir 3+1+4+1+4+3=16 Züge, dies impliziert bereits den Doppelschritt des wBd4. Somit bleiben noch 13 Züge für die schwarzfeldrigen weißen Läufer.

Weiterlesen