
Parameters in StelvioUI.ini
All user parameters with their default values.

General parameters:

• histogramMode = false. Instead of playing strategies, only count them and display them in a
histogram. Default is false. Starts counting at the strategy defined by startAtStrategyNr.

Input / Output parameters:

• inputFileName = problems.txt

• outputFileName = problems_out.txt

• pgnOutput = false. Write solutions/cooks in pgn format. Actually, the output moves are always
fully qualified (like in the non-pgn case), which is sufficient for use in tools like lichess.org.

Strategy read/write parameters:

• saveEveryXStrategiesToFile = -1. Save all found strategies to disk (in the subfolder
/strategies/fen/…). The value -1 means nothing is saved. A value >1 means that this many
strategies are written into a single file. A reasonable value is around 1000, so 1000 strategies per
file (btw: a strategy requires about 2 kb of disk space).

• readStrategiesFromFile = false. In case this is true, instead of searching for strategies, Stelvio
reads strategies previously written to disk using the saveEveryXStrategiesToFile option. This
option is only supported in case parallelize is also true.

Strategy playing parameters:

• retractionMode = kingInCheck. Possible values = {none, kingInCheck}. In case this is set to
kingInCheck, then: If the king is in check in the diagram position, then solving behaves
differently: All possible last moves are initially searched for. All these last moves are then
retracted one by one and the resulting shorter SPGs solved. The partial solving results are then
combined into one overall result.

Parallelizing parameters:

In general, you should adjust the parameters according to your hardware, but also according to the
SPG that you want to solve. To figure out what is best, I recommend playing a bit with different
values for different problems and check how the solving times react. Btw: Histogram mode also
comes with parallel calculation option.

• parallelize = true. By default, Stelvio runs in parallel mode. This is usually quicker than the
traditional single-threaded mode, but in case you want to use your computer at the same time
for other things, then this might not be a good option, as more resources are used.

• numStrategySeekers = 2. Only relevant in case parallelize = true. This can be set to a higher
value in case your computer has multiple processors. In many cases, strategy seeking is fast
anyway and this is not so useful. But in case the SPG has a lot of captures or promotions, then

1



setting this to a higher value can be beneficial.

• numStrategyPlayers = 1. Only relevant in case parallelize = true. Setting this value is a bit tricky.
Since strategy players sometimes require a lot of memory, it can be detrimental to performance
to set this value >1, in case you do not have enough memory. Because: If while playing a
strategy, the position cache is saturated (which is displayed in the UI on the right), then playing
becomes a lot slower. And since each strategy player needs its own position cache, this
saturation will be reached quicker in case strategies are played in parallel. But in case the
memory is sufficient for parallel playing, this option can speed up the solving process
considerably.

• strategyQueueSize = 100000. Only relevant in case parallelize = true. The maximum number of
strategies that the strategy seekers can put into the queue. When the queue is full, they have to
wait until the strategy players have taken strategies off the queue.

Strategy seeking parameters:

• printStrategies = false. Print all strategies into the output file. This can easily fill your disk in
some cases, as strategies can come in the tens of millions. Nice.

• collectSeekPartMetricsAfterXCycles = 2. The interval length for which strategy seeking
information is gathered for displaying in the UI. Setting this to -1 gathers no information and is
the fastest option. Setting this to 1 maximizes the UI updates at the expense of a slight
performance penalty. The default 2 is a compromise between performance and update
frequency.

Strategy condition parameters:

• startAtStrategyNr = 1. This can be set to a high value in case the first x strategies should be
skipped. Also applies to histogram mode. Beware that strategy numbers are only well-defined in
case of non-parallel mode.

Strategy analysis parameters:

• expensiveCollisionDetectionMode = default. Possible values {default, on, off}. There are two
ways for Stelvio to do collision detection:

◦ A more involved analysis that might find more collisions at the expense of time consumed.

◦ A less involved analysis that consumes less time but might find less collisions.

• With expensiveCollisionDetectionMode = on, the first option is chosen.

• With expensiveCollisionDetectionMode = off, the second option is chosen.

• With expensiveCollisionDetectionMode = default, the first option is chosen in case the SPG has
at least 28 pieces, otherwise the second option is chosen.

Cook parameters:

• maxSolutionsPerCook = 2. Number of cook-solutions to add to the output file per cook-strategy.

• stopAfterXCooks = 1. Abort the solving process after finding this number of cook strategies.

2



• printCookStrategy = false. Additionally add the strategy to the output file for found cooks.

Cache parameters:

• positionCacheMaxOverallExponent = -1. Technical value to limit the main cache size which is
usually guessed by the given RAM available. It can be useful, albeit rarely, to downsize the cache
in the special case when the rest of the needed artifacts require a lot of memory. One example
would be a problem with many promoted rooks, as there are then a huge number of
permutations in memory, which rook is what piece initially. Values below 25 are ignored.
2^positionCacheMaxOverallExponent is used.

• positionCacheSplitExponent = 2. How much should we split up the huge cache array into parts.
Values 2-10. This has a performance impact, but has to analyzed still to know what is best.

• positionCacheMaxChainLength = 500. How long should we look for an empty slot in the cache /
try to find our position in the cache. Nobody knows what is best here, but value should
probably be > 100. This also has a performance impact

• positionCacheFullEvictionThreshold = 0.85. The threshold in cache size that triggers eviction.
Between 0 and 1. A value > 1 means never. This also has a performance impact.

• positionCacheSizeAdjustment = 0. The secondary cache can be made slightly larger or smaller.
In case other artifacts need a lot of memory, this can be set to -1, decreasing this caches size. The
value 1 on the other hand increases the secondary cache to the maximum, but if you are
unlucky, Stelvio will blow up with an out of memory error. Possible values are -1, 0, 1.

3


	Untitled
	Parameters in StelvioUI.ini

