
Feedback, suggestions
Stelvio can get a lot better in the future, and this is where you come in (if you want). By supplying
information like the following:

• In the given SPG X, Stelvio gets stuck on this obviously impossible strategy Y.

• In the given SPG X, Stelvio does not see the collision between pieces Y and Z.

• In the given strategy X, Stelvio does not see that the rook needs 5 moves and only calculates 4.

• In the given SPG X, Stelvio plays Y strategies, but Natch/Euclide only play far less. That implies
that Stelvio is missing some strategy analysis logic.

• etc

• Any other improvement ideas not already listed under future developments.

Any such information can be sent to stelvio.feedback(at)gmail.com. Do not hesitate to send any
comments and improvement suggestions to this address. The more input I have, the better I can
make an informed decision what to add for upcoming releases.

But beware that these two things will not be added in future releases:

• I will not waste my time creating a fancy UI. Not a single line of JavaScript will ever be added.

• No fairy elements will ever be supported. I programmed Stelvio with orthodox rules in mind,
broadening the rules would be equivalent to rewriting most of the code.

But give me some slack: As I have probably invested north of 1000 hours for Stelvio already, I might
need a bit of a break before more improvements will be added.

There will be bugs
Any software with this level of complexity contains bugs, Stelvio is certainly no exception. As a
colleague of mine once nicely put it: If there are so many possibilities to make mistakes, you are
bound to make some. To counteract this, I put a lot of effort into the testing machinery to try to
detect mistakes. If you get an internal failure nonetheless, please check the problems_out.txt file
first to see if it is not a simple out-of-memory issue. Those can be usually fixed by giving Stelvio
more RAM. If it is not a memory issue (and not an invalid input on your side), please send a bug
report to stelvio.feedback(at)gmail.com with the problems_out.txt file and a screenshot attached.

The good news is that despite there being bugs, the likelihood that Stelvio comes up with a wrong
C+ verdict is very low. For that to happen, Stelvio would have to find the intended solution but miss
all the cooks. Usually, a cooked problem is cooked for several reasons, so Stelvio would have to miss
all of these, which is highly unlikely.

Known Issues
There are some limitations concerning what Stelvio can do. Most internal structures do not grow in
size greater than to a certain extent, but a few do. In case a problem exceeds assumed boundaries,
there will be some internal error, possibly OutOfMemoryError/ArrayIndexOutOfBoundsException

1



or similar. One case that this can happen is when there are many rooks of the same color on the
board. Say in a case like the 57.5 move length record problem by Frolkin/Pronkin. The reason is,
that at the beginning, all possible permutations are calculated that determine which rook is which
piece. Not only which pawn promoted to a rook matters, but also the promotion square. For
internal reasons, a rook that castled is different to a rook that did not, which further adds to the
permutation explosion. In the 57.5 case, this permutation structure gets huge and does not fit into
the RAM of an ordinary PC. To make a long story short, I made a few assumptions in terms of size of
the different components, usually very generous assumptions. If an SPG nonetheless breeches those
size barriers, then you will most likely get some sort of internal error. You can submit the internal
error as a bug report, and I’ll check if I need to rethink the sizing of certain components.

Known limitations
Stelvio is not well suited for massacre SPGs. In case there are a lot of captures with relatively few
moves, then a simple brute force approach (like Jacobi or Popeye use, as far as I know) can be more
efficient. There are at least two reasons for this:

• There are an enormous amount of strategies to find, making Stelvio’s approach very costly.

• When playing moves in brute force manner, it is quite simply to know when to stop playing:
You can stop when you reach a point where one side needs to play more captures than there are
moves left.

I do not have any intention of adding massacre specific logic to Stelvio, as I think massacre SPGs are
usually not artistic or interesting enough (with a few notable exceptions, like the double rex solus
SPG).

I have further found that Stelvio is not fast for SPGs with mandatory cross captures. This necessity
is detected rather late in the solving process, which means Stelvio plows through gazillions of
strategies without cross captures, only to find out that for all of them, there are not enough moves
due to some line being permanently blocked. I have made some algorithmic inroads on this, but all
of this is still beta and cannot be used yet.

Future developments (hopefully)
• Improve strategy analysis.

◦ When a king is in check in the diagram position, then the consequences of this should be
used.

◦ Add check protection logic.

◦ Finish the started cycle detection logic.

◦ etc.

• Improve strategy playing

◦ Especially the logic around mutually obstructing trajectories.

• Parallelize Stelvio

◦ Splitting up strategy searching

2



◦ Play strategies from a pub/sub queue, either within one machine or even across a cluster of
machines.

• Improve caching logic. Empirical data needs to be gathered here first.

• User defined conditions for strategies (partial solving)

• Other improvements triggered by user feedback.

Many thanks go to
• Pascal Wassong and Etienne Dupuis for their excellent programs. Especially Pascals

achievement with Natch cannot be underestimated, since there was no predecessor to look up
to.

• Gerd Wilts for the PDB export.

• Daniel Bühler and Silvan Diem at my company for granting me the disused hardware that now
grinds away in my basement.

• Silvio Baier and Thierry LeGleuher for testing.

• Thomas Brand for allowing me to host Stelvio on his website.

• Special thanks to Michel Caillaud for very extensive testing and loads of valuable feedback.

3


	Untitled
	Feedback, suggestions
	There will be bugs
	Known Issues
	Known limitations
	Future developments (hopefully)
	Many thanks go to

