The story behind Stelvio (a new SPG solving program)

When I (Reto Aschwanden) first started composing proof games in the early 2000s, Natch had
already been around for a while and soon after Euclide appeared on the scene. Around 2005 I met
Etienne Dupuis, the author of Euclide, once in Paris and he gave me a birds-eye view of how
Euclide worked. I was fascinated by the complexity of the algorithmic problem at hand. At the same
time, I imagined the massive amount of work it would take to create my own program, and I came
to the conclusion that sadly, for lack of time, I would never try.

Over ten years later, on a foggy November day, I started nonetheless. It was clear to me from the
outset that programming this was not just a means to an end, it was the end in itself. I enjoyed
thinking about this complex programming puzzle. I had seen the Euclide code shortly around 2005
but did not dive deep into it at the time, and so I had to start from scratch. But that was also a
deliberate choice: I did not want to copy what the other solving programs did, I'd rather come up
with my own algorithm. In doing so, I might miss out on some really good ideas that Euclide and
Natch contained, but on the upside, I had greater chances of coming up with novel approaches. If
you see a solution to a difficult problem somewhere, this automatically steers your thoughts in that
direction. If you do not have such a solution at hand, then you are forced to find your own. It will
take longer, it might by more painful, but at the same time, you could possibly come up with
something completely different. In the end, just creating a copy of Euclide/Natch is of use to no one.
The only thing that I copied is that Stelvio has the same four phases as Euclide: Initial analysis,
strategy seeking, strategy analyzing and strategy playing.

This project turned out to be a very long one, and at around 2019, I even thought that I would
probably abandon altogether. The issue was that I only worked on it a few days at a time and then
not at all for several months. This way of going at it was of course extremely inefficient and error-
prone. Programming something like this is not like filling in Excel sheets. Every time I restarted, I
had to think myself back into the program. Because of this and for other reasons, I took quite a few
wrong turns and had to rewrite thousands of lines of code. The problem is, that the code needs to
be extremely fast, otherwise it is useless. On the other hand, the code should also be clear, since it is
already inherently complex and nobody wants added complexity on top of that. These two
requirements bite each other, since making everything as clear as possible also makes it slow. A
side note for all the software professionals: The old wisdom that you should make a program
correct first and improve performance later does not apply here. If the core algorithmic ideas are
not good ones that perform well, no amount of profiling and fine-tuning will fix that. You’ll have to
restart from scratch in such a case. In order to avoid such a scenario, I always included
performance considerations when writing code. That includes tolerable amounts of redundancy
here and there, something I usually avoid at all costs in other software endeavours.

A bit unnerving in the whole process was the lingering uncertainty if the program would ever be of
any use. Before you have implemented most of the logic, you are pretty much left in the dark of
how it will eventually perform. And there are many design choices you have to make early on,
when you do not really have a clue what is best.

One very uncommon trait of this project is the fact that it was certain that the goal would never
change: Solve orthodox SPGs as fast as possible. No new chess rules would emerge. No other
requirements would ever pop up. In other software projects, the goal is a moving target, sometimes
fast moving.



In 2022, I had some months off from work, and finally I had a decent stretch of time to try to finish
a first version of Stelvio. And that is what I did, at least up to the point where I could give it to some
testers. While testing, Michel Caillaud came up with many good ideas for improving the strategy
analysis logic, and I subsequently refined that area. Very helpful in the whole testing process was a
PDB export that Gerd Wilts generously supplied. Many bugs were found because of it, reaching
from trivial mistakes, to stupid ones but also to really subtle ones. I exported the WinChloe SPGs as
well and in the end I was equipped with almost 3300 SPGs that were said to be correct. Not all of
them are useful for testing though, as some take a very long time to solve. But around 2800 can
reasonably be used for test cases.

At the time I also got hold of a disused server from the place I work at. Definitely not the newest
and hottest hardware you can find, but at least a lot of it. And hey, it was for free, so I'm certainly
not complaining! This server is now heating up my basement with its 56 CPUs and 0.5 TB RAM.
Especially at the end of development, when I was cleaning up the code, this server was invaluable
to test my adjustments.

In order to get some kind of benchmark for performance, I started to test many problems with
Euclide and dump the solving times into a database. Then I did the same for Stelvio. As a result I
was able to compare the solving times of the two programs. The differences are fascinating:
Sometimes Euclide is faster than Stelvio, but at least for my limited test set, it is mostly the other
way around. The differences are sometimes huge, and I should analyze the cases where Stelvio is
too slow in the future. Stelvio is obviously missing something in those cases. But I also know of
many cases where Stelvio is finished quickly and Euclide gets nowhere within hours. All in all I am
pleased with Stelvios performance so far, given that for this first release, I’'ve not yet implemented
all the optimizing ideas that I want to. Especially the realm of strategy analyzing and playing need
further improvement. But those ideas can be added later on, when a first release has found to be
stable.

This software project is easily the most complex one I’ve ever been involved in. No contest. One of
my most demanding intellectual endeavours ever - and very satisfying at the same time.

Some technical notes

For all geeks out there. Stelvio is written in Java, which might suprise some, as a JVM based
language might not seem the best fit at first glance. I am convinced that the language choice does
not have a big performance impact, as long as the language meets a few requirements. One of them
is being able to access massive amounts of memory (hundreds of gigabytes are easily useful, even
terabytes), which is not a problem in Java, but there are limitations for applications running in a
browser environment (at least at the moment, as far as I know).

I’'m not concerned with SPGs which are solved in very short time. Any time below 5 seconds is fast,
and I do not care if it is 0.2 seconds or 4.5 seconds. So any performance penalty that comes with
slower ramp up time because of compiling the code by the JIT compiler at the start does not matter
much in my opinion. Pretty quickly, all the important methods will have been compiled anyway, as
they are executed millions if not billions of times. And if you really want, you can even force the
compilation up front. On the upside, Java comes with garbage collection and other nice features,
together with a huge tool set. And I professionally write code in Java, so coding in this language
feels natural and I probably made fewer mistakes because of it. The learning curve to start



programming Stelvio was basically nonexistent, which would not have been the case for any other
language.

What came as a slight surprise is the raw speed that today’s hardware provides. I was a bit blurred
by slow applications like Word, Excel or some browser based applications. But when an application
is programmed with performance in mind, then the possible speed is fascinating. Even on my run-
of-the-mill notebook, Stelvio can play up to 3 million moves a second depending on various factors.
I find this quite remarkable, considering that every move comes with a few checks like "is this piece
pinned", "are the required squares empty", "am I in check", "do I have enough free moves to play
this", "do we attain a new position or one that we attained before" etc.

I made some performance comparisons with Euclide and a few with Natch. The differences are
massive, often orders of magnitude. For that reason, anything less than one order of magnitude can
be considered basically equivalent and down to implementation details. Differences by one order of
magnitude or more cannot be due to language choice or other minor details. These kinds of
differences result in one program seeing a way to shortcut the calculation drastically that another
does not. In the end, it is the algorithm that matters not the language it is written in.



	Untitled
	The story behind Stelvio (a new SPG solving program)
	Some technical notes

