
Stelvio

Introduction
Stelvio is a program devoted to solving orthodox SPGs (Shortest Proofgames). To make things bit
clearer, its easiest to consider an example. Let us look at a masterpiece from Finland.

This can be checked by Stelvio, and after around 1.5min, Stelvio comes to the conclusion, that there
is exactly one way to reach this position in 23.0 moves:

1



The successful strategy and the unique solution can subsequently be displayed:

 

The name
Stelvio, with its 2757m of altitude above sea level, is one of the highest and one of the most
beautiful mountain passes of the Alps. As a bike rider, I’ve been up there many times and have good
memories of it. I needed a name, and I liked the way Stelvio sounds. This name breaks the

2



"tradition" of naming the program after a famous mathematician like Jacobi or Euclide. Let’s say the
idea of naming it Scholze was not very appealing…

Compatibility
Stelvio can run on Windows and also on Mac (Thierry LeGleuher has tested it on Mac - I personally
do not own one). For the moment, the UI is broken on Linux (at least for my installation), something
I should fix in a later release. It is possible though to run Stelvio on Linux with the provided
stelvio10.sh file. The UI looks distorted, but at least the solving process is not affected, and the
problems_out.txt file with the solving result is correctly generated.

Requirements
Solving SPGs is often memory-intensive, especially for SPGs with a lot of free moves. For that
reason, it can be very beneficial to run Stelvio with most of the RAM that you have on your
machine. You can find the amount of RAM you have in the System properties, common values for a
notebook would be 8g-32g. I’d say 8g is bare minimum (can Tetris run with less?).

Btw: Running Stelvio with way more RAM than is needed for a particular SPG will likely increase
the solving time for this SPG, as there are costs involved accessing large amounts of memory on
hardware level. You can witness this e.g. in the required ramp-up time: When given a lot of
memory, Stelvio needs much longer to get going. This is due to the fact that the large cache needs to
be initialized. But for SPGs that take a long time to solve, and added 20 seconds or so up front do not
matter. When giving Stelvio almost all or all of your RAM, it is advised to close other applications so
that the memory is in fact free to use.

3



Installation
As Stelvio is written in Java, there needs to be a corresponding Java Runtime Environment installed
for it to run. You can get your OS-specific version from here: https://www.oracle.com/ch-de/java/
technologies/downloads/. I have tested Stelvio with Java 11 and Java 17. E.g. for Windows, you can
download Java 17 with this link: https://download.oracle.com/java/17/latest/jdk-17_windows-
x64_bin.msi. You then need to run the downloaded file and install it to a directory of your choice,
recommended is "c:\java\java17" (this path should not contain spaces). Now download
stelvio<version>.zip and unzip it to a directory of your choice, e.g. "c:\spg\stelvio". The zip file
contains the following:

• bin folder containing some *.jar files (the code)

• doc folder containing PDFs (documentation)

• stelvio<version>.bat (the file to run)

• stelvio<version>.sh (the file to run on Linux)

• stelvioUI.ini (the parameter file)

• problems.txt (example input)

Adjust stelvio<version>.bat

You should open stelvio<version>.bat in a text editor and adjust the maximum memory settings. Per
default, it says "-Xmx8g" in the file, which means Stelvio is allowed to use 8g of RAM. If you have
more memory available, then give most of it to Stelvio, e.g. "-Xmx16g" for 16g of RAM. Also make
sure that the path that points to the Java Runtime Environment is correct. The default is
"c:\java\java17\", but you need to adjust this in case you opted to install Java at some other location.

To test your installation, just double-click stelvio<version>.bat, which should run Stelvio with the
provided problems.txt file.

Troubleshooting

If Stelvio does not start when double-clicking on the stelvio<version>.bat file, then most likely the
Java Runtime Environment cannot be found or its version is too old. Check if the path contained in
stelvio<version>.bat pointing to java.exe is correct and adjust if needed.

UI
The simple terminal-based UI gives some impression where Stelvio stands in the solving process.

4

https://www.oracle.com/ch-de/java/technologies/downloads/
https://www.oracle.com/ch-de/java/technologies/downloads/
https://download.oracle.com/java/17/latest/jdk-17_windows-x64_bin.msi
https://download.oracle.com/java/17/latest/jdk-17_windows-x64_bin.msi


What it all means:

• Next to the board:

◦ Number of pieces and number of moves are obvious.

◦ The green lines: How the pawns are assigned to partitions currently in the strategy seeking
process. Partitions are the types of pieces on the board that are mutually exclusive, we have
partition values (K, Q, R, WB, BB, S, P). WB stands for white square bishop and BB for black
square bishop. Top line is white assignment {-,P,P,P,-,-,P,Q}, lower line is black assignment
{P,P,P,P,WB,-,-,S}. This means for white, that a/e/f pawns are captured, b/c/d/g pawns remain
pawns and that the h-pawn is a queen in the diagram position. For black, a/b/c/d pawns
remain pawns, the e-pawn is a white square bishop visible in the diagram, f/g pawns are
captured and h-pawn promotes to knight and is visible in the diagram. At the outset of
strategy seeking, all possible assignments of pawns to partitions are calculated, in the
example we have 319 for white and 2 for black. During strategy seeking, these assignments
are all gone through in a big loop, and we are currently at assignment 3 for white and 1 for
black. This information gives you a hint how far strategy seeking and therefore solving
already is.

◦ 2+0: Number of free moves for the current strategy by color, so 2 for white and 0 for black.

• On the right:

◦ Solving time so far (hh:mm:ss).

◦ Current move path (not to be taken too seriously, this can be stale/inconsistent data for
technical reasons. If garbage is displayed, this has no effect on the solving itself, only the
display is invalid).

◦ Cache/strategy metrics:

▪ 3m/268m: Currently, the playing cache is basically empty (3 million). Cache can hold 268

5



million positions. This cache is bigger if you have more RAM available, which can be
very useful depending on the SPG in question.

▪ 119/2k/10m/0.3g:

▪ 119: The strategy number of the current strategy being played.

▪ 2k: The number of strategy found so far in thousands. All but 119 were subsequently
filtered by strategy analysis.

▪ 10m: Number of moves played for the current strategy in millions.

▪ 0.3g: Total number of moves played for all strategies so far, in billions.

• Below the board:

◦ The current strategy, i.e. what each piece does, white on the left and black on the right, with
associated move count per piece.

◦ The column on the far right: Histogram of already played strategies (top 8 entries, as there is
limited space). So in the example, 17 strategies with 2+0 free moves have already been
played, next to strategies with 1+0 and 0+0 free moves.

When a solution is found or at the end of solving, pressing "Space" displays the solution and the
successful strategy:

When there are cooks, Stelvio counts the number of strategies that contribute to cooks, in the
example 63. In case strategies which can be uniquely played are found, these are counted as valid
solutions and displayed as well.

A brief note on what Stelvio counts as a cook/solution: In case a SPG requires an even number of
half-moves, e.g. 22.0, then any solution/cook needs to have an even number of half-moves.
Correspondingly for SPGs requiring an odd number of half-moves. This seems a good approach to
take, since who is at play is part of the position to reach. So in case in the example one could reach

6



the diagram position in 21.5 moves, then this does not count for Stelvio. Any shorter move-path
with same parity of half-moves does count though, so in the example, Stelvio would count
solutions/cooks in {21.0, 20.0, 19.0, … 1.0} moves.

Histogram mode

In order to get a first impression if an SPG can be solved in a reasonable time, it can be useful to
simply search for all the strategies without actually playing them. This is what the histogram mode
is for. In this mode, strategies are added up and grouped by white/black free moves.

7



So in the example, there are 352 strategies found with 2+0 free moves, 612 with 1+0 and 1352 with
0+0 free moves. Strategy seeking only took 23 seconds, so computing the strategy histogram is much
faster than solving the SPG (in this particular case). The SPG looks solvable in reasonable time given
this histogram information. It is also possible to attain a partial histogram: You can tell Stelvio to
only start adding up strategies after strategy number X. This can be useful if you want to know
what is left in terms of strategies, if Stelvio already solved up to strategy X.

User interaction
The playing of the current strategy can be stopped by typing 's'. Stelvio will move on to the next
strategy thereafter. Pressing Ctrl-C cancels the solving process.

Input / Output
A simple text file (by default problems.txt) serves as input. It needs to be in the same directory as
stelvio<version>.jar. In problems.txt, the SPG needs to be given in FEN notation on the first line,
and the number of half moves on the second line, something like:

1nbq4/ppk1p3/Rp5p/3npr2/R3P3/2br1B1P/PP2P2P/1NBQNK2
65

Pieces are denoted by:

• K/k = King

• Q/q = Queen

• R/r = rook

• B/b = bishop

• N/n/S/s = knight

• P/p = Pawn

The result is written into an output file (by default named problems_out.txt). There is a stelvioUI.ini
file for parameters that can be adjusted by the user. If no such file is present, then default values
are used. See also StelvioParameters.pdf.

8


	Untitled
	Stelvio
	Introduction
	The name
	Compatibility
	Requirements
	Installation
	UI
	User interaction
	Input / Output


