
Stelvio

Introduction
Stelvio is a program devoted to solving orthodox SPGs (Shortest Proofgames). To make things bit
clearer, its easiest to consider an example. Let us look at a masterpiece from Finland.

This can be checked by Stelvio, and in less than 1 minute (depending on hardware and other
parameters). Stelvio comes to the conclusion, that there is exactly one way to reach this position in
23.0 moves:

1

The successful strategy and the unique solution can subsequently be displayed:

The name
Stelvio, with its 2757m of altitude above sea level, is one of the highest and one of the most
beautiful mountain passes of the Alps. As a bike rider, I’ve been up there many times and have good
memories of it. I needed a name, and I liked the way Stelvio sounds. This name breaks the

2

"tradition" of naming the program after a famous mathematician like Jacobi or Euclide. Let’s say the
idea of naming it Scholze was not very appealing…

There is another reason why Stelvio is a good name, as I found out by coincidence in fall of 2024:
The anagram "Solve it"!

Compatibility
As Stelvio is written in Java, it can run on various platforms, among them Windows, Mac and
Linux.

Requirements
Solving SPGs is often memory-intensive, especially for SPGs with a lot of free moves. For that
reason, it can be very beneficial to run Stelvio with most of the RAM that you have on your
machine. You can find the amount of RAM you have in the System properties, common values for a
notebook would be 8g-32g. I’d say 4g is bare minimum (can Tetris run with less?).

Btw: Running Stelvio with way more RAM than is needed for a particular SPG will likely increase
the solving time for this SPG, as there are costs involved accessing large amounts of memory on
hardware level. You can witness this e.g. in the required ramp-up time: When given a lot of
memory, Stelvio needs much longer to get going. This is due to the fact that a large cache needs to
be initialized. But for SPGs that take a long time to solve, and added 20 seconds or so up front do not
matter. When giving Stelvio almost all or all of your RAM, it is advised to close other applications so
that the memory is in fact free to use.

3

Installation
As Stelvio is written in Java, there needs to be a corresponding Java Runtime Environment installed
for it to run. You can get your OS-specific version from here: https://www.oracle.com/ch-de/java/
technologies/downloads/. I have tested Stelvio with Java 11 and Java 17. E.g. for Windows, you can
download Java 17 with this link: https://download.oracle.com/java/17/latest/jdk-17_windows-
x64_bin.msi. You then need to run the downloaded file and install it to a directory of your choice,
recommended is "c:\java\java17" (this path should not contain spaces). Now download
stelvio<version>.zip and unzip it to a directory of your choice, e.g. "c:\spg\stelvio". The zip file
contains the following:

• bin folder containing some *.jar files (the code)

• doc folder containing PDFs (documentation)

• stelvio<version>.bat (the file to run)

• stelvio<version>.sh (the file to run on Linux)

• stelvioUI.ini (the parameter file)

• problems.txt (example input)

Adjust stelvio<version>.bat

You should open stelvio<version>.bat in a text editor and adjust the maximum memory settings. Per
default, it says "-Xmx8g" in the file, which means Stelvio is allowed to use 8g of RAM. If you have
more memory available, then give most of it to Stelvio, e.g. "-Xmx16g" for 16g of RAM. Also make
sure that the path that points to the Java Runtime Environment is correct. The default is
"c:\java\java17\", but you need to adjust this in case you opted to install Java at some other location.

To test your installation, just double-click stelvio<version>.bat, which should run Stelvio with the
provided problems.txt file.

Troubleshooting

If Stelvio does not start when double-clicking on the stelvio<version>.bat file, then most likely the
Java Runtime Environment cannot be found or its version is too old. Check if the path contained in
stelvio<version>.bat pointing to java.exe is correct and adjust if needed.

UI
The simple terminal-based UI gives some impression where Stelvio stands in the solving process.

Here is what is displayed for a strategy player:

4

https://www.oracle.com/ch-de/java/technologies/downloads/
https://www.oracle.com/ch-de/java/technologies/downloads/
https://download.oracle.com/java/17/latest/jdk-17_windows-x64_bin.msi
https://download.oracle.com/java/17/latest/jdk-17_windows-x64_bin.msi

What it all means:

• Below the copyright notice:

◦ Player 1/4: Which page is being displayed. We are currently looking at the page for strategy
player 1 out of 4 such players. Pages can be switched using left-arrow/right-arrow in order
to see pages for other strategy players/strategy seekers.

◦ Nr: 1/3: The SPG being solved. In the example, there are 3 SPGs contained in the input file,
and we are currently solving the first SPG.

• Next to the board:

◦ Number of pieces and number of moves are obvious.

◦ Queued: 993: Number of strategies that have been found that still need to be played. The
numbers here are before any possible strategy splitting.

◦ 2+0: Number of free moves for the current strategy by color, so 2 for white and 0 for black.

• On the right:

◦ Solving time so far (hh:mm:ss).

◦ Current move path (not to be taken too seriously, this can be stale/inconsistent data for
technical reasons. If garbage is displayed, this has no effect on the solving itself, only the
display is invalid).

◦ Cache/strategy metrics:

▪ 0m/167m: Currently, the playing cache is basically empty (0 million). Cache can hold 167
million positions (this is actually just an approximation, but good enough). This cache is
bigger if you have more RAM available, which can be very useful depending on the SPG
in question.

▪ 24/24/2m/0.0g:

5

▪ 24: The number of strategies already taken off the strategy queue (before any
strategy splitting).

▪ 24: The strategy number being played (possibly after strategy splitting). In the
current case, no strategy splitting was needed, and therefore the numbers coincide.

▪ 2m: Number of moves played for the current strategy in millions.

▪ 0.0g: Total number of moves played for all strategies so far, in billions. Currently, less
than 100m have been played, so this displays 0.

• Below the board:

◦ The current strategy, i.e. what each piece does, white on the left and black on the right, with
associated move count per piece.

◦ The column on the far right: Histogram of already played strategies (top 8 entries, as there is
limited space). So in the example, 2 strategies with 2+0 free moves have already been
played, next to strategies with 1+0 and 0+0 free moves.

As already displayed above, when a solution is found, pressing up-arrow/down-arrow displays the
solution and the successful strategy.

When there are cooks, Stelvio counts the number of strategies that contribute to cooks, in the below
example 39 cook strategies where found so far. In case strategies which can be uniquely played are
found, these are counted as valid solutions and displayed as well.

A brief note on what Stelvio counts as a cook/solution: In case a strategy can be played in multiple
ways, then this counts as a cook strategy for Stelvio. This is the correct approach to take for 99.9% of
the SPGs out there. In case a SPG requires an even number of half-moves, e.g. 22.0, then any
solution/cook needs to have an even number of half-moves. Correspondingly for SPGs requiring an
odd number of half-moves. This seems a good approach to take, since who is at play is part of the
position to reach. So in case in the example one could reach the diagram position in 21.5 moves,
then this does not count for Stelvio. Any shorter move-path with same parity of half-moves does
count though, so in the example, Stelvio would count solutions/cooks in {21.0, 20.0, 19.0, … 1.0}
moves.

6

Above we have seen the UI for a strategy player, let’s now look at what is displayed for a strategy
seeker:

• Next to the board:

◦ The green lines: How the pawns are assigned to partitions currently in the strategy seeking
process. Partitions are the types of pieces on the board that are mutually exclusive, we have
partition values (K, Q, R, WB, BB, S, P). WB stands for white square bishop and BB for black
square bishop. Top line is black assignment {-,R,P,-,P,P,R,-}, lower line is white assignment
{P,Q,P,P,Q,P,BB,P}. This means for white, that a/c/d/f/h pawns remain pawns, b/e-pawns are

7

queens in the diagram position and g-pawn is a black square bishop in the diagram. For
black, c/e/f pawns remain pawns, the b/g-pawns are rooks visible in the diagram and a/d/h
pawns are captured. At the outset of strategy seeking, all possible assignments of pawns to
partitions are calculated, in the example we have 9 for white and 3770 for black. During
strategy seeking, these assignments are all gone through in a big loop, and we are currently
at assignment 2 for white and 100 for black. This information gives you a hint how far
strategy seeking and therefore solving already is.

◦ Queued : 2. The number of strategies in the queue that are waiting to be played. This queue
is the link between all the strategy seekers and all the strategy players.

• On the right:

◦ Solving time so far (hh:mm:ss).

◦ Strategy metrics:

▪ 3/5k/0m/0.0g:

▪ 3: The number of strategies that were retained after strategy analysis and which
therefore need to be played.

▪ 5k: The number of strategies initially found (before strategy analysis), in thousands.

▪ 0m: Since the strategy seeker is not playing, this number remains 0.

▪ 0.0g: Since the strategy seeker is not playing, this number remains 0.

From version 1.6 onwards, the current strategy seeking path can be displayed. This is helpful in
order to get an estimate of how long the seeking process will take. The first 14 levels of seeking are
shown, together with how long the corresponding seek node has been active (in seconds, the
number on the left). This information is somewhat analogous to the first 6 moves displayed when
playing, only here, we have the first 14 "seeking moves". The information should be read top-down,
so the two pawn matching choices have been active for 150 seconds respective 146 seconds. The
next thing the seeking algorithm looks for are promotion variants. After that, a pawn capture
square is chosen for the Pg2, currently we chose h5. Btw, the amount of possible options displayed
to the right is sometimes only an estimate, but better an estimate than nothing.

If you are in histogram mode, then up-arrow/down-arrow switches between histogram and this
new seeking information. Gathering this information takes a bit of time and in case you are not
interested, it can be fully turned off. See the StelvioParameters file for details.

Strategy seeking parallelization algorithm

With version 3.0, Stelvio uses an embarrassingly simple but much improved approach to parallelize
the strategy seeking workload. Once I saw this approach, I could not figure out why I had not seen it
earlier.

On an abstract level, strategy seeking traverses a tree of search nodes, usually billions of nodes. At
the top of the tree (i.e. the starting point), the strategy is basically empty, containing only the things
that are visible from the diagram position. While moving down the search tree, the strategy
becomes more and more defined, until the strategy is either fully defined or we have reached a
dead end. All found strategies are leaves in this tree. The converse is not true: Not all leaves are
strategies, as most search paths are simply dead ends that do not lead to a fully defined strategy.

8

For the new approach, there is a synchronization threshold defined by the parameter
strategySeekingSyncDepth (dashed line in the image). This is the tree depth at which all the strategy
seekers compete for tree nodes. All tree nodes above this level are computed by all strategy seekers.
As the tree grows exponentially, the top few levels pale in size compared with the lower levels, so
computing the top levels multiple times is usually negligible. When a seeker reaches the
synchronization threshold level, it tries to acquire the corresponding node n. Two things can
happen:

• Acquiring the node n is successful (for any node on the synchronization level, this is true for
exactly one seeker). This seeker is then solely responsible to compute the whole subtree of n. No
parallelization takes place for this subtree.

• Acquiring the node is not successful. The seeker interprets this path as a dead end and goes on
searching (moving backwards first)

All the strategy seekers agree on the order of all the nodes that are found up to the synchronization
level (i.e. the subtree defined by the synchronization level and all nodes above it is traversed in
deterministic fashion by all seekers). So all these nodes can be viewed as numbered, and all seekers
agree on these node-numbers. The synchronization mechanism simply keeps track of the maximal
node-number max_n on the synchronization level that has been acquired. An acquisition attempt
for node-number n is successful if and only n > max_n. Such a successful attempt then increases
max_n to n. Therefore, any later seeker trying to acquire this same node n fails, because n <=
max_n.

On a side note: The invariant that all seekers must find the same amount of nodes above the
synchronization level is checked at the end of strategy seeking. If the numbers do not coincide, then
an internal error occurs.

Effects of strategySeekingSyncDepth (i.e. synchronization level)

The default level is 12 and should be ok for most SPGs. I assume that levels between 8 and 18 could

9

be useful.

• Level too low: This can lead to strategy seeker starvation, as the work items get too big in a
skewed search tree. So you might have 10 seekers, but after a short time, only 1-2 are still active.
That is a sign that you should increase strategySeekingSyncDepth.

• Level too high: If the level is set too high, then the part of the tree that all seekers calculate
becomes large (if you set the level to say 100 (i.e. a level which is greater than the tree depth),
then all seekers calculate the whole tree and nothing is parallelized). So arbitrary high values
are not useful either.

So there is a tradeoff to be made here and the optimal value depends on the SPG at hand.

The synchronization level is actually visible in the UI:

The current strategy seeker path can be seen here (top-down). So first, the pawn partition
matchings are chosen, then promotion variants etc. The lower 4 nodes are displayed in slightly
darker violet. These darker nodes depict nodes below the synchronization level, and they are
therefore not parallelized. Btw: Some nodes do not have a useful UI representation (sometimes). So
even if you have strategySeekingSyncDepth=12, you might not see all 12 nodes in the UI (like in the
example: there are only 9 lighter nodes displayed).

Histogram mode

In order to get a first impression if an SPG can be solved in a reasonable amount of time, it can be
useful to simply search for all the strategies without actually playing them. This is what the
histogram mode is for. In this mode, strategies are added up and grouped by white/black free
moves.

10

So in the example, there are 72 strategies currently found by this strategy seeker (numbers are per
seeker) with 2+0 free moves, 138 with 1+0 and 403 with 0+0 free moves. When all seekers are
finished, the strategy numbers are added up and written into the output file. It is also possible to
attain a partial histogram: You can tell Stelvio to only start adding up strategies after strategy
number X. Beware though that strategy numbers are only deterministic in case only 1 strategy
seeker is used. This can be useful if you want to know what is left in terms of strategies, if Stelvio
already solved up to strategy X.

Last move retraction

In case a king is in check in the diagram, it can be very helpful to retract the last half move and
solve all implied shorter SPGs and combine their results thereafter. By default, this is what Stelvio
now does in such a case. While solving, the retracted move is displayed next to the diagram, as well
as how many such moves there are. In the example, there are four possible last moves, and we have
currently retracted the second. The problem displayed is the one with the move retracted. In the
special e.p. retracted case, 2 half moves are retracted, as these 2 half moves cannot be split up. In
the special castling retracted case, Stelvio makes sure that the king and involved rook are not
moving beforehand. In histogram mode, the histogram of all sub-SPGs are written to the output file,
as well as an overall histogram. Beware that this overall histogram will not coincide with the
histogram you get when solving the SPG without retraction. This retraction functionality can be
switched off by a new parameter named retractionMode. Limitation: Last move retraction and
save/read strategies from/to file are not currently supported in combination. Btw: The
retractionMode=always (i.e. even if king is not in check) will probably be added in a future release.

11

Some thoughts on parallel solving

Both histogram and normal solving are executed in parallel. Modern computers come with several
CPUs, so calculating in parallel can be beneficial for performance.

The basic architecture is quite simple: There are x strategy seekers and y strategy players. The
numbers x and y can be parametrized to suit the SPG at hand and your hardware. When running in
parallel, the strategy seekers search for strategies and put the found strategies into a queue. The
strategy players on the other hand consume strategies from this queue and try to play them. The
granularity for the strategy seekers is a single pawn partition matching combination plus some
further few seeking choices. This can be a bit coarse, and I might adjust this in the future. In the
example below, there are 9 * 3770 such combinations, which the seekers consume one by one until
none are left.

12

Parallel solving examples

The screenshots below are from version 1.27, but the insights gained are still valid in the current
version.

Same SPG but different concurrency metrics

I give a few examples of the effect of parallelizing, when it is beneficial and when it is not. Let’s take
the 2023 Andernach TT winner by Michel. In non-parallel mode (the only mode available in Stelvio
1.2), this SPG is solved on my notebook in some 35 minutes:

13

Both strategy seeking and strategy playing take significant time for this SPG, so splitting up is
beneficial. With 1 seeker and 1 player, the solving time drops to 27 minutes in Stelvio 1.3:

As no strategy requires a lot of memory, we can also split up strategy playing without harm. With 1
seeker and 2 players, the solving time drops to 20 minutes:

In the above configuration, the queue is sometimes empty. That means that the players have
nothing to do at times, so an additional seeker will likely reduce the solving time. With 2 seekers
and 2 players, the solving time drops to 18 minutes:

14

Just for fun, I tried with 4 seekers and 4 players, which still shaves a minute of solving time:

As my notebook now runs out of hardware, increasing the numbers further will have a negative
effect, since in the end, all seekers/players compete for the same underlying hardware.

Different SPGs and the usefulness of parallelism for them

Histogram mode in parallel (strategy seeking in parallel)

With the new improved method of parallelizing introduced with version 3.0, strategy seeking

15

parallelization should be useful in all the cases that require substantial strategy seeking time. As a
rule of thumb, the number of captures contributes heavily to strategy seeking time, but also the
number of possible promotions and of course SPG length.

Solving multiple strategies in parallel

• Parallel solving of n strategies at a time can be detrimental under some circumstances. The
reason is that each played strategy needs it own position cache, and this cache requires a lot of
memory. So in case you have 2 players instead of 1, then each position cache is only half the
size. Now in case while playing a strategy, the position cache is close to full, then solving
performance for this strategy decreases dramatically. Therefore, it can be slower to play
strategies in parallel than to play them serially. A case where this happens is the length record
problem (P1407171), which by the way still cannot be solved.

• In the Andernach TT winner above, parallel solving is pretty useful, cutting the solving time in
half.

• Parallel solving is the most useful in case strategy seeking takes up most of the time, and you
have a lot of hardware (CPUs) that can be used for parallelizing. As there is almost no limit for
number of seekers (given enough available CPUs), you can go all-in in that respect. An order of
magnitude can be shaved of the solving time in that way for P1386153.

Solving a single strategy in parallel

• With v4.0, Stelvio is able to play a single strategy in parallel. This approach does not suffer from
the downside (cache size decrease) mentioned above, so this approach is often preferable. The
parallelization technique used is on an abstract level exactly the same as the one used for
strategy seeking, see the chapter "Strategy seeking parallelization algorithm". At a certain half-
move depth (given by the parameter "slavePlayerHalfMoveSyncDepth"), all slave players
compete for the subtree beneath the current move path. Say the synchronization depth is 7, and
a slave player played 1.Sc3 a5 2.Se4 a4 3.Sg3 a3 4.e4. At this point, this slave player tries to
acquire the rights to play the subtree beneath 4.e4. In case no one has yet acquired this subtree,
then this slave players request succeeds, and he goes on playing this subtree. Otherwise 4.e4 is a
dead end for this slave player (the subtree is skipped).

• Performance expectations: There is a synchronisation penalty to be paid when playing a single
strategy in parallel. The shared position cache is highly frequented by all involved slave players
and this is not for free. So performance improvements are not proportional to the number of
slave players. On my machine, I found about 5fold performance increase with 10 slave players
and about 10fold increase with 30 slave players. Your mileage may vary. When parallelizing this
way, the cache should be split up into a decent number of cache splits, since these cache splits
are the items that are synchronized on (cache splitting). So "positionCacheSplitExponent"
should be set somewhere in the 8-15 range. Otherwise, there is too much contention and the
cache becomes a bottleneck.

• This new mode of parallelizing is useful most of the time. I would not use it in the case strategies
are numerous and are played very quickly anyway (the usual case for massacre style SPGs).
There are slight setup-costs involved for playing in parallel, so in such a case, playing single-
threaded might be faster (or playing multiple strategies in parallel).

• These 2 parallelization techniques can be combined. So you might play 2 strategies in parallel
with 4 slave players each.

16

• UI: Each slave player gets its own page. E.g. in case 2 strategies are played in parallel with 4
slave players each, then we have players 1.1/1.2/1.3/1.4 and 2.1/2.2/2.3/2.4 respectively.

Current limitations, possible future developments

One big possible improvement comes to mind: Parallelize not only on one machine, but across a
cluster of machines.

Collision detection modes
With v2.0, Stelvio has two modes of collision detection: A more involved mode
(expensiveCollisionDetectionMode = on) and a less involved mode
(expensiveCollisionDetectionMode = off). Both modes have their merit, as both can be orders of
magnitude faster than the other, depending on the problem. In case
expensiveCollisionDetectionMode = default, then the expensive mode is chosen for an SPG if and
only if it has at least 28 pieces, which seems like a reasonable heuristic.

Collision detection is done for every found strategy. In case there are only few strategies to analyze,
then the additional costs of more involved collision analysis will be negligible. One example where
the involved analysis is very beneficial is the 4th Prize in the Champagne Tourney 2023 by Peter
van den Heuvel.

The involved analysis detects that the black queen must pass through e1, eliminating any free
moves that white would otherwise have. In case this is solved with
expensiveCollisionDetectionMode = off, then solving takes hours if not days.

Any massacre style SPG will be solved quicker with expensiveCollisionDetectionMode = off, as there
are billions of strategies to analyze and involved analysis is not needed. But not only massacres can
benefit from less collision detection, the following SPG (P1013138) by me, Michel and Gerd is also

17

solved quicker with less analysis (by a factor 4).

Check protection
With v2.0, Stelvio can sometimes determine that check protection is needed. This can greatly
reduce solving times. An example is the classic 1999 Phénix first prize by Michel (P1000010), which
can now be solved in reasonable time on an ordinary machine.

By looking at the displayed strategy, it becomes apparent that check protection necessity for the

18

black king was detected, as a white rook is planned to make a detour (Ra1-b7-a1). Check protection
gives rise to strategy splitting: Once check protection necessity is detected, all the possible ways to
provide it are calculated. The original strategy is subsequently split into several sub-strategies. This
splitting is visible in the UI in the metrics on the right hand side: In the example, we already took 3
strategies from the queue, but we are currently playing the 7th (sub-)strategy.

Btw: Strategy splitting can also arise from baseline collisions when it is unclear who makes a
detour, e.g. Ra1-g1, Rh1-b1 is split into 2 sub-strategies.

Speculative strategy splitting
With v4.0, a new strategy analysis logic is available in the case there 0 free moves for a given color.
In general, Stelvio tries to determine the paths of each piece during the analysis phase as much as
possible. E.g. Ra1x[bSb8]e7 might become Ra1-b1-b7x[bSb8]e7, in case no other option is available.
But oftentimes, some options cannot be excluded up front, say Ra1-c4 might be played as Ra1-a4-c4
or Ra1-c1-c4. Before v4.0, this lead to the strategy path Ra1-c4 without further investigation. With
speculative splitting available, Stelvio can be advised to split the strategy into 2, one with Ra1-a4-c4
and one with Ra1-c1-c4. With the intermediate square determined in the sub-strategies, it might be
the case that one or even both of these options are found to be impossible, since new constraints
can possibly be found for the intermediate squares. As you might imagine, all of this is recursive, so
in case you have multiple paths like this, say Ra1-c4, Sg1-f4 and Rh1-g5, there is a total of 8 options
to add intermediate squares to these paths, so we might get a maximum of 8 sub-strategies because
of it.

Modes:

• speculativeSplitterMode = none: No such logic is used

• speculativeSplitterMode = probe: All 2 move segments (e.g. Ra1-c4) are tentatively split up into
sub-strategies at first, but only to determine if the strategy can be further refined or rejected.

◦ In case both sub-strategies seem possible after further investigation, then the strategy is not
split up at this segment (Ra1-c4 remains).

◦ In case only one sub-strategy seems possible after further investigation, then the strategy is
refined using the now mandatory intermediate square (e.g. Ra1-c1-c4).

◦ In case both sub-strategy are impossible, the strategy is rejected.

• speculativeSplitterMode = always: All 2 move segments are split up into sub-strategies (e.g. Ra1-
c1-c4 and Ra1-a4-c4).

Performance impact:

Splitting a strategy into sub-strategies can have both a positive and negative performance impact.
My guess is that the mode "probe" is usually better than the mode "always", but I do not have a lot
of data to support this. In case strategies are played quickly anyway and a lot of strategies exist (e.g.
the massacre SPG case), then "none" is likely the best option here. In any other case, my bet is on
the mode "probe".

19

User interaction
The playing of the current strategy can be stopped by typing 's'. Stelvio will move on to the next
strategy thereafter. Pressing Ctrl-C cancels the solving process. In parallel mode, you have different
UI pages per seeker/player. You can switch between these pages using left-arrow/right-arrow.

Input / Output
A simple text file (by default problems.txt) serves as input. It needs to be in the same directory as
stelvio<version>.jar. In problems.txt, the SPG needs to be given in FEN notation on the first line,
and the number of half moves on the second line, something like:

1nbq4/ppk1p3/Rp5p/3npr2/R3P3/2br1B1P/PP2P2P/1NBQNK2
65

Pieces are denoted by:

• K/k = King

• Q/q = Queen

• R/r = rook

• B/b = bishop

• N/n/S/s = knight

• P/p = Pawn

You can add several problems to the input file, which will then be solved in succession.

The result is written into an output file (by default named problems_out.txt). There is a stelvioUI.ini
file for parameters that can be adjusted by the user. If no such file is present, then default values
are used. See also StelvioParameters.pdf.

Partial solving, strategy conditions
With v4.0, Stelvio can be advised to play only a subset of all found strategies. This can be useful in
case full testing is out of reach. It is important to understand that strategies cannot be changed by
this functionality. It is e.g. impossible to tell Stelvio that wSb1 needs to play 6 moves minimum,
when Stelvio only sees 4 moves. But what you can do instead is to let Stelvio play only those
strategies for which Stelvio has itself calculated at least 6 moves for the wSb1. Beware that these
restrictions only filter the strategies that are being played. The playing of the strategies that pass the
filter remains exactly the same as usual. So even if a strategy condition says e.g. Sb1<.a (which
means Sb1 does nothing and remains alive on b1), it could still be the case that this knight performs
a roundtrip or a switchback (which was simply not detected to be necessary by the strategy finding
logic). One other thing to note is that in case of last move retraction due to check in the diagram
position, the strategy conditions are applied to the problems that are attained after retracting the
possible last moves.

Notation example:

20

1nbq4/ppk1p3/Rp5p/3npr2/R3P3/2br1B1P/PP2P2P/1NBQNK2
65
StrategyConditions: Pc2-c8=B-e6<.Pf7: AND Ra1-a4<.a

In the example, Stelvio will only play strategies for which: The wPc2 promotes without capturing on
c8 to bishop and is thereafter captured on e6 by the bPf7 AND the wRa1 moves to a4 without
capturing.

Logical operators:

• AND

• OR

• NOT

These operators are used in the obvious manner. A single clause may not contain both ANDs and
ORs. Brackets are needed in this case. E.g. (A OR B AND C) is not allowed, it needs to be either ((A OR
B) AND C) or (A OR (B AND C)). NOT has precedence over AND/OR, as you would expect. So NOT A
AND B means (NOT A) AND B.

Possible strategy condition types:

• Condition on strategy free moves for a color, e.g.: fm:w>=5 (i.e. white free moves need to be at
least 5). Syntax:

◦ Prefix fm:

◦ Color specifier, either w or b

◦ Numeric condition using one of the operators <, <=, =, >=, >.

• Condition on capture count for a piece, e.g.: cc:Sb1>=3 (i.e. Sb1 needs to capture at least 3 times).
Syntax:

◦ Prefix cc:

◦ Piece specifier, something like Sb1 or Rh8

◦ Numeric condition using one of the operators <, <=, =, >=, >.

• Path minimum moves for a piece, e.g.: ml:Sb1<5 (i.e. Sb1 minimal path is less than 4 moves
long). Syntax:

◦ Prefix ml:

◦ Piece specifier, something like Sb1 or Rh8

◦ Numeric condition using one of the operators <, <=, =, >=, >.

• Path condition for a piece, e.g.: Pa2xSg8|b8=RxQd8|c4.a. Syntax:

◦ Prefix: Piece specifier, something like Sb1 or Rh8

◦ Followed by 0-n path segments like xSg8|b7

◦ See more details in the tables below.

21

Path segment type example Meaning

Sb1-c4 Sb1 moves to c4 (does not capture)

Sb1-b1 Sb1 moves to b1 (so switchbacks without
capture)

Sb1xb1 Sb1 captures on b1 (so switchbacks with
capture)

Sb1xc4 Sb1 captures on c4 (does not capture between b1
and c4)

Sb1_c4 Sb1 moves to or captures on c4 (does not capture
between b1 and c4)

Sb1_xc4 Sb1 captures on c4 (and possibly captures 1-n
times between b1 and c4)

Sb1__c4 Sb1 moves to or captures on c4 (and possibly
captures 1-n times between b1 and c4)

Path endings example Meaning

Sb1.a Sb1 is alive

Sb1.d Sb1 is dead

Sb1< Sb1 stays on b1 (possibly captured or not)

Sb1<.a Sb1 stays on b1 and is alive

Sb1<.d Sb1 stays on b1 and is dead

Sb1<.Qd8: Sb1 is captured on b1 by Qd8

Sb1-c1<.Qd8: Sb1 moves to c1 and is captured there by Qd8

Sb1.Qd8: Sb1 is captured somewhere by Qd8

Capture example Meaning

Pa2xb5 Pa2 captures some piece on b5 (as next capture)

Pa2xQd8 Pa2 captures Qd8 somewhere (as next capture)

Pa2xQd8|b5 Pa2 captures Qd8 on b5 (as next capture)

Promotion example Meaning

Pa2=R Pa2 promotes somewhere to rook

Pa2-a8=R Pa2 promotes on a8 to rook

Pa2xb5=R Pa2 captures on b5 and goes on to promote
somewhere to rook

Pa2xb5=R-c4< Pa2 captures on b5 and goes on to promote
somewhere to rook and ends on c4.

22

Castling example Meaning

Kg1-g1-h2< White king side castling, then end on h2

Kc1-c1-h2< White queen side castling, then end on h2

Kg8-g8-h2< Black king side castling, then end on h2

Kc8-c8-h2< Black queen side castling, then end on h2

Read/write strategies to file
Stelvio can be advised to save all found strategies in structured format to disk. In a second step,
instead of searching for strategies, Stelvio can thereafter read these strategies from disk and try to
play them. This is especially useful in case one uses histogram mode at first. Calculating the
histogram sometimes requires a lot of time, only to find very few strategies. In order to
subsequently play these strategies, they can now be read from disk in no time, instead of
recalculating all of them all over again. Limitation: Last move retraction and save/read strategies
from/to file are not currently supported in combination.

Known issues
Given a cooked SPG and a cook-strategy s for it (i.e. a strategy s that can be played in multiple ways
and therefore cooks the SPG). It is possible that not all permutations of how this strategy s can be
played are found. This should usually be irrelevant, as the verdict is unaffected (the SPG is cooked,
the strategy s is found to be a cook-strategy in any case).

Explicitly finding all the different ways a cook-strategy can be played seems pretty pointless, so I
have not invested time in fixing this. As possible fixes imply a performance penalty, I’m inclined to
leave this as is for the moment at least.

23

	Untitled
	Stelvio
	Introduction
	The name
	Compatibility
	Requirements
	Installation
	UI
	Collision detection modes
	Check protection
	Speculative strategy splitting
	User interaction
	Input / Output
	Partial solving, strategy conditions
	Read/write strategies to file
	Known issues

